Journal of Organometallic Chemistry, 66 (1974) 161–194 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Review

de la r

ACTIVATION OF CARBON DISULPHIDE BY TRANSITION METAL COMPLEXES

161

I.S. BUTLER and A.E. FENSTER *

Department of Chemistry, McGill University, P.O. Box 5070, Montreal 101, Quebec (Canada) (Received June 29th, 1973)

Contents

	11 - T	1979 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -				
I. Introduction						162
II. Carbon disulphide complexes						162
A. π -CS ₂ complexes				· •		162
1. Platinum, palladium and nickel						162
2. Vanadium					1.1.1	164
3. Iron and ruthenium						164
4. Rhodium and iridium				•		165
B. S-Bonded complexes						168
C. Complexes with bridging CS ₂ groups					· · · · · · ·	169
D. CS ₂ insertion complexes						169
1. Metal-hydrogen bonds						170
2. Metal-carbon bonds						172
3. Metal-nitrogen bonds				· · · ·	•	173
Metal—oxygen and metal—sulphur bo	onds	20 E.S.				173
5. Metal-halogen bonds						174
III. Thiocarbonyls						174
A. Group VIII metals		•			• * *	175
1. Iron				1. S.	• 2 · · ·	175
2. Ruthenium						176
3. Cobalt						177
4. Rhodium	· .			-		177
5. Iridium	• •			1. 1. 1.	a de la companya de l La companya de la comp	178
B. Manganese			an a	1997 - 1997 -	a a ser a	181
IV. Conclusion	2.1	* * 1 Te				184
V. Infrared data for carbon disulphide and this	iocarbon	yl complex	es			185
References	in di Angelandi. Na			ter i sete		193
				e det er e		

* Present address: Department of Chemistry, University of British Columbia, Vancouver 8, British Columbia (Canada).

and the second secon

I. Introduction

In 1931, Duncan et al. [1] reported that carbon disulphide reacts with copper mercaptides (Cu-SR) to give trithiocarbonates (Cu-SSCSR). However, this initial discovery was not followed up and the subject of activation of carbon disulphide by transition metal complexes lay dormant for over three decades. It came to light again in 1966 when Baird and Wilkinson [2] synthesized the first thiocarbonyl complexes, *trans*-RhX(CS)(PPh₃)₂ (X = Cl, Br), from the reactions of RhX(PPh₃)₃ with CS₂. Since then, a number of metal thiocarbonyls have been prepared by reactions in which CS₂ acts as the source of the CS ligand in the formation of M-CS bonds. These reactions, however, represent only one aspect of the activation of CS₂ by transition metal complexes. In fact, papers published over the past seven years indicate that CS₂ itself can coordinate to transition metals to form four distinctly different types of complexes.

A review of the activation of carbon disulphide by transition metal complexes has not yet appeared in the literature despite the growing interest in this field. In the present review an attempt has been made to summarize the known reactions of CS_2 with transition metal complexes. Since most of the new complexes formed have been identified chiefly by infrared spectroscopy, it was felt worthwhile to tabulate the pertinent infrared data immediately following the review. The literature coverage is considered to be complete to March 1973.

II. Carbon disulphide complexes

A. π -CS₂ complexes

The first examples of transition metal complexes to exhibit so-called " π -CS₂ coordination" were the carbon disulphide complexes of platinum and palladium. These complexes, together with a related complex of nickel, will be discussed first; following this, the π -CS₂ complexes of vanadium, iron, ruthenium, rhodium and iridium will be described. The π -CS₂ complexes of manganese believed to be intermediates in the formation of π cyclopentadienylmanganese thiocarbonyl complexes will be considered later (see p. 182).

1. Platinum, palladium and nickel

During their investigation of potential methods for the synthesis of transition metal thiocarbonyl complexes, Baird and Wilkinson [3] discovered that $Pt(PPh_3)_3$ reacts with CS_2 to form the stable adduct, $Pt(PPh_3)_2(CS_2)$. They proposed the square-planar structure I for this complex. Moreover, they noted the similarity of this structure to that of the π -arylacetylene complexes, $Pt(PPh_3)_2(acetylene)$ [4]. In fact, they were able to obtain $Pt(PPh_3)_2(CS_2)$ by displacement of the phenylacetylene group in $Pt(PPh_3)_2(PhC_2H)$ by CS_2 . The platinum carbon disulphide complex and its palladium analogue can also be prepared by treatment of $M(PPh_3)_4$ (M = Pd, Pt) with CS_2 [5,6].

The π -CS₂ coordination suggested for Pt(PPh₃)₂(CS₂) has been confirmed by threedimensional X-ray diffraction of the complex [5,7] and of its palladium analogue [6]. The geometry of the CS₂ ligand is modified drastically upon coordination. Uncoordinated CS₂ is linear with a C-S bond length of 1.554 Å. The coordinated molecule is bent with S-C-S bond angles of 136.2° and 140° for the platinum and palladium complexes, respectively; the mean C-S bond lengths are 1.626 Å for Pt(PPh₃)₂(CS₂) and 1.64 Å for its palladium analogue. The geometry around the central metal atom in the two complexes is essentially similar. The metal atom and the four atoms coordinated to it are almost coplanar in both cases.

Triphenylstibine displaces the CS₂ group from Pt(PPh₃)₂(π -CS₂) and its palladium analogue to yield the tetracoordinated species, Pt(PPh₃)₂(SbPh₃)₂ and Pd(PPh₃)₂-(SbPh₃)₂ [6]. However, with Diphos * the two triphenylphosphine groups in Pd(PPh₃)₂-(π -CS₂) are substituted, resulting in the formation of a new π -CS₂ complex, Pd(Diphos)-(π -CS₂).

Baird and Wilkinson [8] failed to obtain the nickel analogue of the platinum and palladium π -CS₂ complexes. Reaction of Ni(CO)₂(PPh₃)₂ with CS₂ affords a complex of stoichiometry, Ni(PPh₃)(CS₂), which has a much simpler X-ray powder pattern than those for the palladium and platinum π -CS₂ complexes. The nickel complex is dimeric in solution but could be polymeric when solid. The structure proposed for the dimer involves sulphur bridging between the two nickel atoms (II).

* Diphos = 1, 2-bis(diphenylphosphino) ethane.

2. Vanadium

Baird et al. [9] have reported that CS_2 reacts with the purple complex, Cp_2V ($Cp = \pi - C_5H_5$), to give a green solution. This solution is extremely air-sensitive but a $\pi - CS_2$ complex could be identified by spectroscopic means. In addition to bands due to the Cp moiety, there is a strong absorption in the IR spectrum at 1141 cm⁻¹. A similar band is also present in the spectra of the platinum and palladium $\pi - CS_2$ complexes. Consequently, the 1141 cm⁻¹ band was assigned as a C=S stretching frequency. The tetrahedral structure III is supported by the ESR spectrum of the green solution which indicates the presence of vanadium(IV).

3. Iron and ruthenium

The iron(II) complex, $Fe(CO)_2(PPh_3)_2(\pi-CS_2)$, has been prepared by the reaction of $Fe_2(CO)_9$ and CS_2 in the presence of PPh₃ [9]. A more stable complex is obtained when $P(p-FC_6H_4)_3$ is used instead of PPh₃; a less stable one is produced when the reaction is carried out in the presence of $P[p-(MeO)C_6H_4]_3$. The tris(*p*-fluorophenyl)phosphine complex undergoes phosphine exchange with excess of PPh₃ to give the triphenylphosphine complex. A hexacoordinated structure (IV) was proposed for the complexes.

Busetto et al. [10] have postulated that the intermediate, $[CpFe(CO)_2CS_2]^-$, is formed during the synthesis of the iron thiocarbonyl cation, $[CpFe(CO)_2CS]^+$ (see p. 175).

However, no decision was made as to the nature of the CS_2 coordination in the complex.

The reaction of PPh₃ with RuCl₂(PPh₃)₃ or RuCl₂(PPh₃)₄ in refluxing CS₂ solution yields the ionic species, [RuCl(PPh₃)₃(π -CS₂)]Cl; the bromo analogue has also been prepared [11]. Structure V is suggested for these cationic species.

4. Rhodium and iridium *

The reactions of CS_2 with a variety of rhodium and iridium complexes have been investigated. Details of some of these reactions are given in Fig. 1*a*.

When RhCl(PPh₃)₃ is treated with CS₂ a rather unstable complex analysing approximately as RhCl(PPh₃)₂(CS₂)₂ is produced [8]. The IR spectrum of this complex exhibits two strong bands at 1510 and 1020 cm⁻¹. The latter band is roughly in the same region as the ν (C=S) frequency for Pt(PPh₃)₂(π -CS₂) and Pd(PPh₃)₂(π -CS₂). Consequently, this frequency has been assigned to a π -bonded CS₂ ligand. The presence of the 1510 cm⁻¹ band has been attributed to a CS₂ molecule coordinated to the rhodium atom through one of its sulphur atoms (structure VI).

^{*} In 1963, Marko et al. [12] reported the preparation of the first cobalt carbonyl disulphide complex, allegedly Co₄(CO)₁₀CS₂. The complex is formed in low yield from the reaction of Co₂(CO)₈ with CS₂. In a subsequent publication [13], the same authors indicated that an isomer of the above CS₂ complex could be obtained by varying the Co₂(CO)₈/CS₂ ratio. However, X-ray diffraction studies have indicated that the true compositions of the "isomers" are in fact Co₃(CO)₈CS₂[SCo₃(CO)₇] [14] and [SCo₃(CO)₇](SC)(S)[CCo₃(CO)₉][15], respectively. Details of these studies have not yet been published.

Yagupsky and Wilkinson [16] have prepared several cationic π -CS₂ complexes isolable as their tetraphenylborate salts. For instance, reaction of RhCl(PPh₃)₃ with CS₂ in the presence of MeOH and excess PPh₃ affords [Rh(PPh₃)₃(CS₂)(π -CS₂)]⁺. This cation is believed to contain an S-bonded CS₂ group similar to that shown above for RhCl(PPh₃)₂-(CS₂)(π -CS₂). This CS₂ group is readily lost from the complex to yield the stable cation, [Rh(PPh₃)₃(π -CS₂)]⁺.

Addition of CS₂ to *trans*-RhCl(CO)(PPh₃)₂ in MeOH in the presence of excess PPh₃ produces a blue solution. Treatment of this blue solution with sodium tetraphenylborate results in precipitation of [Rh(CO)(PPh₃)₃(π -CS₂)]BPh₄. The thiocarbonyl analogue, *trans*-RhCl(CS)(PPh₃)₂ (see p. 177), also reacts with CS₂ in the presence of MeOH and excess PPh₃ to give [Rh(CS)(PPh₃)₂(CS₂)(π -CS₂)]⁺ and [Rh(CS)(PPh₃)₂(π -CS₂)]⁺.

A complex, analysing as RhCl(CS)₂(PPh₂Et)₂, can be obtained from the reaction of the rhodium(III) hydride, RhCl₂H(PPh₂Et)₃, with CS₂ [17]. Infrared data for this complex are compatible with the structure VII.

Addition of SnCl₂ in ethanol to a CS₂ solution of RhCl(PPh₃)₃ and PPh₃ affords the complex, Rh(PPh₃)₂(π -CS₂)(SnCl₃) [16]. The chemistry of the analogous iridium complexes is very similar to that of the rhodium complexes discussed above [16]. Cationic species are also produced in the presence of MeOH, PPh₃ and CS₂ (Fig. 1(b)).

The reaction of *trans*-IrCl(CO)(PPh₃)₂ with CS₂ produces a mixture of unreacted starting material and the new complex, IrCl(CO)(PPh₃)₂(π -CS₂) [8]. All attempts to separate the two complexes failed. However, when the iodo analogue, *trans*-IrI(CO)(PPh₃)₂, is used instead, the pure complex, IrI(CO)(PPh₃)₂(π -CS₂), can be isolated. Its infrared spectrum in CS₂ solution exhibits two bands in the π -CS₂ region at 1188 m and 1165 s cm⁻¹. Consequently, it was proposed that the complex is in fact a mixture of two isomers (VIII) which differ in the orientation of the π -bonded CS₂ group.

Deeming and Shaw [18] have isolated the analogous dimethylphenylphosphine complex, IrCl(CO)(PPhMe₂)₂(π -CS₂). The NMR spectrum of the complex consists of two 1/2/1 triplets. However, because two triplets would be expected for each of the two possible π -CS₂ isomers, it was suggested that only one isomer is presented in solution. This may also be true for the solid state as there is only one Ir-Cl stretch observed (at 252 cm⁻¹).

A dimeric chlorine-bridged structure containing two π -CS₂ groups has been proposed for the complex of stoichiometry IrCl(C₈H₁₂)(CS₂), which is the product of the reaction between the 1, 5-cyclooctadiene complex, [IrCl(C₈H₁₂)]₂, and CS₂ [9].

B. S-Bonded complexes

There are only a few complexes in which a CS_2 molecule is believed to be bonded to a transition metal solely through a sulphur atom. Some of these for rhodium and iridium have already been described in the previous section since they also contain π -bonded CS_2 groups.

Purely on the basis of IR data in the CO stretching region, a complex with structure IX allegedly results from the reaction of $Fe_2(CO)_9$ with CS_2 [9].

A complex of stoichiometry, $Pt(Me)I(PPh_3)_2CS_2$, has been isolated from the reaction

くていていたのではなどではないです。

of Pt(Me)I(PPh₃)₂ with CS₂ [17]. The strong band in the spectrum at 1520 cm⁻¹ was taken to be indicative of an S-bonded CS₂ molecule. The ease of CS₂ dissociation from the complex supports this suggestion.

C. Complexes with bridging CS₂ groups

The complex, $K_6[(CN)_5CoCS_2Co(CN)_5]$ has been obtained independently by Mizuta et al. [19] and by Baird et al. [9] from the reaction of $K_2[Co(CN)_5]$ with CS_2 . The two research groups differ in their ideas on the proposed mode of CS_2 bridging in the complex. The Japanese chemists prefer a structure (X) in which there are two Co-S bridges, while the British group consider that the CS_2 molecule is C-bonded to one Co atom and S-bonded to the other (XI).

$$K_{6}[(CN)_{5}Co-S=C=S-Co(CN)_{5}] K_{6}[(CN)_{5}CoS-C-Co(CN)_{5}]$$
(X)
(XI)

Direct reaction of $IrCl(PPh_3)_3$ with CS₂ leads to green solutions from which complexes of stoichiometry, $IrCl(PPh_3)_x(CS_2)_y$ (x = 2-3, y = 1-3), can be obtained [16]. The actual composition of the complexes depends critically on the experimental conditions employed. Owing to their instability, the exact nature of these compounds has not been determined. However, from IR data alone, it was suggested that $IrCl(PPh_3)_3(CS_2)$ and $IrCl(PPh_3)_2(CS_2)_3$ might be dimeric with bridging CS₂ groups and that in the latter an S-bonded CS₂ group might also be present.

A special case of CS₂ bridging results from the reaction of the anions, $(1, 2-B_9C_2H_{11})_2M^-$ (M = Fe, Co) with CS₂ in the presence of AlCl₃ and HCl. Zwitterionic species are formed which have an -SCH⁺-S bridge between the two π -bonded dicarbollide ligands of the complex [20].

D. CS_2 insertion complexes

Although insertion reactions between main group metal complexes and CS_2 have been known for some time [21], very little work had been reported until recently on similar reactions with transition metal complexes. Potentially, the insertion of a CS_2 molecule into an M-X bond (M = transition metal, X = H, alkyl, aryl, amine, alkoxide, etc.) could lead to a variety of known or new dithio compounds:

The known CS_2 insertion reactions of transition metal complexes will be discussed according to the nature of the metal-ligand bond into which the CS_2 molecule inserts.

1. Metal-hydrogen bonds

Recently, Commercuc et al. [17] have reported that CS_2 inserts into metal-hydrogen bonds of d^8 rhodium, iridium, and platinum complexes. For example, reaction of RhH(CO)(PPh₃)₃ with CS₂ leads to the formation of a compound of stoichiometry, [Rh(CO)(PPh₃)₂(C₂S₃)]₂S. The low solubility of this compound in organic solvents precluded a molecular weight determination. In its IR spectrum there is no Rh-H absorption but there is a strong band at 993 cm⁻¹ which was assigned to a π -CS₂ group. The absence of the metal hydride group in the complex was also confirmed by proton NMR spectroscopy. Structure XII was suggested for the complex; it can be arrived at by coupling together two molecules of the insertion product, Rh(CO)(PPh₃)₂(π -CS₂)(CSSH), with elimination of H₂S.

The CS₂ insertion reactions of iridium hydrides such as $IrH(CO)(PPh_3)_3$ have been monitored by NMR spectroscopy [17]. In this case, the following reaction scheme was proposed:

IrH(CO)(PPh₃)₃ + CS₂
$$\rightarrow$$
 PPh₃ + IrH(CO)(PPh₃)₂(π -CS₂)
 \downarrow H⁻ transfer
Ir(CO)(PPh₂)₂(CSSH)

The lack of documentation on the chemical shift of the SH proton precluded a distinction between a -CSSH or -SSCH type of bonding in the insertion product.

The reaction of $IrH(CO)_2(PPh_3)_2$ with CS₂ yields a solid which analyses as Ir(CO)-(PPh₃)₂(CS₂)₂ [17]. Infrared data point to an increase of the oxidation state of the iridium atom and to the presence of a π -CS₂ group. Although the two formulations compatible with an Ir^{III} complex containing two CS₂ molecules are $Ir(CO)(PPh_3)_2(\pi$ -CS₂)(CSSH) and $Ir(CO)(PPh_3)_2(\pi$ -CS₂)(SSCH), no NMR signal attributable to -CSSH or -SSCH protons was observed.

Interaction of CS₂ with the π -cyclopentadienyl hydride complexes, Cp₂WH₂ and Cp₂ReH, has also been studied but no definite products were obtained [17].

Pallazzi et al. [22] have obtained the insertion products, $PtX(PPh_3)_2(SSCH)$ (X = Cl, Br, I, CN), from the reactions of *trans*-PtXH(PPh_3)₂ with CS₂. The chloro complex, PtCl(PPh_3)₂(SSCH), has two new bands in its IR spectrum at 1050 and 930 cm⁻¹ but no Pt-H absorption. Structure XIII is preferred for the -SSCH group.

This choice was made on the basis that the complex does not exhibit acidic properties. Moreover, treatment of the complex with KCN yields potassium dithioformate, KS_2CH .

Kinetic data [22] seem to indicate that there are two steps in the formation of $PtCl(PPh_3)_2(SSCH)$: (1) S-coordination of CS_2 to produce a labile species and (2) intramolecular hydrogen migration in a four-centre transition state to form the insertion product.

Another complex prepared by CS_2 insertion into a metal—hydrogen bond for which X-ray data are available is $Re(CO)_2(PPh_3)_2(SSCH)$ [23]. This complex, which is prepared [24] by refluxing a CS_2 solution of $ReH(CO)_2(PPh_3)_2$, contains a chelated dithioformato group. Although the presence of a hydrogen atom associated with the CS_2 group could not be detected by X-ray diffraction, spectroscopic data indicate that the original hydride ligand has been transferred to the carbon atom of the CS_2 entity. Moreover, although it

was not mentioned in the above work, the bonding parameters for the four-membered chelate ring in $\text{Re}(\text{CO})_2(\text{PPh}_3)_2(\text{SSCH})$ are essentially similar to those observed for $\text{Re}(\text{CO})_4(\text{SSCPh})$ which is also obtained by a CS_2 insertion process (see below). The results for $\text{Re}(\text{CO})_2(\text{PPh}_3)_2(\text{SSCH})$ led Albano et al. [23] to suggest that the related iridium complex, $\text{Ir}(\text{CO})(\text{PPh}_3)_2(\text{CSSH})$, described earlier must also contain a chelated dithioformato group.

Einstein et al. [25] have shown that CS₂ will insert at room temperature into the M-H bonds of fac-Mn(CO)₃(Diphos) H and fac-Mn(CO)₃(Ph₂PCH₂PPh₂) H (M = Mn, Re) to form M(CO)₃(Diphos)(SSCH) and M(CO)₃(Ph₂PCH₂PPh₂)(SSCH), respectively. The molecular arrangement of the M(SSCH) molety was confirmed by single crystal X-ray diffraction of the manganese bis(diphenylphosphino) methane complex. The four complexes are of particular interest because they are among the first for which laser Raman data have been obtained. The ν (CS) modes are of relatively high intensity and fall in the region 999-649 cm⁻¹.

2. Metal-carbon bonds

Complexes of the type, $M(CO)_4(SSCR)$ (M = Mn, Re; R = Ph, CF₃), have been prepared by treatment of the appropriate free dithioacid with $M(CO)_5 R$ [26, 27]. An alternative synthetic route to Re(CO)₄(SSCPh) and a variety of new dithiocarboxylato complexes of manganese and rhenium has been reported by Lindner et al. [28–30]. The reactions involve direct CS₂ insertion into metal-carbon bonds.

$$M(CO)_5 R + CS_2 \xrightarrow{3-5 \text{ days}} M(CO)_4(SSCR) + CO$$

$$(M = Mn, R = Me, Ph, p-MeC_6H_4;$$

$$M = Re, R = Me, Ph, p-MeC_6H_4, p-ClC_6H_4, PhCH_2, Ph_3C)$$

An X-ray diffraction study of $\text{Re}(\text{CO})_4(\text{SSCPh})$ indicates that the dithio group acts as bidentate ligand and the coordination around the central metal is pseudo-octahedral [31]. The vibrational spectra of the manganese and rhenium complexes are in agreement with the observed pseudo- $C_{2\nu}$ molecular symmetry [28, 30].

Lindner et al. [30] have noted that the trend towards CS_2 insertion into the $M(CO)_5R$ complexes is the same as that observed for the "CO insertion" reactions of the pentacarbonylmanganese(I) complexes, $Mn(CO)_5R$, viz., the reaction is more facile with an aromatic than with an aliphatic derivative. The rhenium dithiocarboxylates are more stable than their manganese analogues. The dithiobenzoato derivative, $Re(CO)_4(SSCPh)$, undergoes CO substitution by PPh₃ to give the tricarbonyl derivative, fac-Re(CO)₃PPh₃(SSCPh).

During the course of their work on the CS_2 insertion reactions of a variety of transition metal complexes, Commercuc et al. [17] prepared a complex of stoichiometry, $RhI_2(Me)(CS_2)(PPh_3)_2 \cdot C_6H_6$, from the reaction of $RhI_2(Me)(PPh_3)_2 \cdot C_6H_6$ with CS_2 . It was suggested that the complex contains a dithiometryl ester group -CSSMe. However, in view of the CS_2 insertion reactions described earlier, it seems much more likely that the MeCS₂ in this complex is S-bonded and chelated to the rhodium atom. Moreover, such a structure is in accord with the tendency of Rh^{III} to become hexacoordinated.

A complex of stoichiometry, Rh(Ph)(PPh₃)₃(CS₂)₂, has been isolated from the reaction of Rh(Ph)(PPh₃)₃ with CS₂ [17]; a structure containing both a π -CS₂ and a dithiophenyl ester group was proposed. However, the dithiobenzoato complexes, M(CO)₄-(SSCPh) (M = Mn, Re), exhibit an IR band at 1267 cm⁻¹ which is very close to that assigned to a dithiophenyl ester group at 1261 cm⁻¹. Consequently, it seems much more likely that the PhCSS group in the rhodium complex is S- rather than C-bonded.

3. Metal-nitrogen bonds

Vetter et al. [32, 33] have prepared N, N-dialkyldithiocarbamates of phosphorus and arsenic by the insertion of CS_2 into P—N and As—N bonds. This method has been extended to the early transition metals by Bradley et al. [34, 71]. In particular, complexes of Ti^{IV} , V^{IV} , and Zr^{IV} give the hitherto unknown tetrakis (N, N-dialkyldithiocarbamato) complexes:

$$M(NR_2)_4 + 4CS_2 \longrightarrow M(SSCNR_2)_4$$

(M = Ti, Zr, R = Me, Et, *n*-Pr; M = V, R = Me, Et)

In the case of pentakis (N, N-dimethylamido) derivatives of niobium and tantalum, different products are obtained.

$$Nb(NMe_{2})_{5} + 5CS_{2} \longrightarrow Nb(SSCNMe_{2})_{4} + 1/2(Me_{2}NCS_{2})_{2}$$

Ta(NMe_{2})_{5} + 5CS_{2} \longrightarrow Ta(SSCNMe_{2})_{5}

McCormick and Kaplan [35] have synthesized a series of dithiocarbamates of Ni^{II} by the direct insertion of CS₂ into Ni–N bonds of a variety of amine complexes, e.g. $[Ni(En)_3]Cl_2$ and $[Ni(Amp)_3]Cl_2^*$.

Carbon disulphide also gives insertion products with $[tetraaziridinenickel]^{2+}$ and $[tetrakis(2-methylaziridine)nickel]^{2+}$ [36]. Infrared data suggest that the resulting complexes contain N, S- rather than the expected S, S-bonded ligands.

4. Metal-oxygen and metal-sulphur bonds

Insertion of CS_2 into metal-oxygen and metal-sulphur bonds in alkoxides and mercaptides leads to the formation of metal xanthates and metal trithiocarbonates, respectively

* En = ethylenediamine ; $Amp = H_2NCH_2$

e.g. with Ni(OMe)₂, nickel methylxanthate [Ni(SSCOMe)₂] is formed [37].

As early as 1931, it was known that copper mercaptides react with CS₂ to give Cu^I alkyltrithiocarbonates [1]. More recently, it has been shown that the trithiocarbonates of molybdenum and tungsten, CpM(CO)₂(SSCSR) (M = Mo, W; R = Me, Ph), can be obtained in a similar way from CpM(CO)₃SR or [CpM(CO)₂SR]₂ [38]. Also, spectroscopic evidence indicates that the corresponding nickel complexes, [CpNiSR]₂ (R = Me, Et), undergo CS₂ insertion to give the unstable species, CpNi(SSCSR) [39].

While investigating the reactions of $Pt(PPh_3)_2O_2$ with various unsaturated molecules, Hayward et al. [40] discovered that this complex and its palladium analogue react with CS₂ to give the known dithiocarbonates, $Pt(PPh_3)_2(SSCO)$ and $Pd(PPh_3)_2(SSCO)$, respectively.

5. Metal-halogen bonds

There is only one example of CS_2 inserting into a metal-halogen bond viz., the formation of $[Pt(PPh_3)_2(SSCF)]HF_2$ from the reaction of $[PtF(PPh_3)_3]HF_2$ with CS_2 [41]. The crystal structure of this complex displays pseudo-square-planar coordination around the metal with the FCSS group bonded through the two sulphur atoms.

III. Thiocarbonyls

The first examples of transition metal thiocarbonyl complexes, trans-RhX(CS)(PPh₃)₂ and RhX₃(CS)(PPh₃)₂ (X = Cl, Br), were synthesized by Baird and Wilkinson [2] in 1966. Since then, relatively few thiocarbonyl complexes have been prepared and even these have been restricted to certain Group VIII metals and manganese. Furthermore, in sharp contrast to metal carbonyls, only three metal thiocarbonyls containing more than one CS group attached to a central metal have so far been identified.

The discovery of the first transition metal thiocarbonyls prompted Richards [42] to undertake a molecular orbital calculation for the CS molecule. The ground state electronic configurations for the CO and CS molecules are: CO, $(1\sigma)^2 (2\sigma)^2 (3\sigma)^2 (4\sigma)^2 (5\sigma)^2 (1\pi)^4$; CS, $(1\sigma)^2 (2\sigma)^2 (3\sigma)^2 (4\sigma)^2 (1\pi)^4 (5\sigma)^2 (6\sigma)^2 (7\sigma)^2 (2\pi)^4$. The calculation indicated that while the 7σ and 2π orbitals are almost degenerate the 7σ orbital is localized largely on the carbon atom and the 2π is a bonding orbital distributed on both the carbon and the sulphur atoms. The two electrons in the 7σ orbital constitute a lone pair which can be used to bond the CS group to a metal in a thiocarbonyl complex. This situation is similar to that for CO in metal carbonyls in which the 5σ lone pair is used. Moreover, the pair of electrons in the 7σ orbital of CS should be more readily available since the energy of this orbital is -0.4705 a.u. as compared to -0.5704 a.u. for the 5σ CO orbital. Furthermore, there appears to be a greater possibility of backbonding in thiocarbonyls than in carbonyls. The energy of the empty 3π antibonding orbital on CS is +0.0848 a.u. which is significantly lower than the energy +0.1507 a.u. of the equivalent 2π antibonding orbital on CO.

The above conclusions were based on calculation of the wave function for CS and CO

at their equilibrium internuclear distances. Richards repeated his calculations for three internuclear CS distances to see if there was any significant change when the bond was stretched during complex formation. He found that while the energy of the 7σ orbital decreases slightly with increasing interatomic distance, the energy of the 3π orbital decreases somewhat more rapidly. In other words, the availability of the 7σ electrons for σ -bonding is affected only slightly by the increase in interatomic distances expected during complex formation, whereas the empty 3π antibonding orbital becomes more readily available for backbonding.

Richards felt that his analysis revealed that thiocarbonyls should be significantly more stable than their carbonyl counterparts because CS is favoured over CO both in terms of σ and π bonding. This conclusion appears to be contradicted by the present paucity of thiocarbonyls. However, some fragmentary experimental data for the known thiocarbonyl complexes do suggest that CS is a better π -acceptor than CO and so should be more strongly bound to a transition metal than is CO.

A. Group VIII metals

1. Iron

The cationic iron thiocarbonyl complex $[CpFe(CO)_2CS]^+$ has been synthesized [10] from $[CpFe(CO)_2]^-$ and CS_2 .

$$[CpFe(CO)_2]^- + CS_2 \longrightarrow [CpFe(CO)_2CS_2]^- \xrightarrow{MeI}$$

$$CpFe(CO)_2(CSSMe) \xrightarrow{HCl} [CpFe(CO)_2CS]^+Cl^- + MeSH$$

Attempts to isolate the two proposed intermediates in this reaction were unsuccessful. However, the IR spectrum of the reaction mixture after addition of MeI was consistent with the presence of a dithioester.

It should be mentioned that $[CpFe(CO)_2CS]^+$ was first prepared [43] by the following reaction sequence:

$$[CpFe(CO)_2]^- + ClC(S)OR \longrightarrow CpFe(CO)_2C(S)OR \longrightarrow (R = Me, Et)$$

$$[C_pFe(CO)_2CS]^+Cl^- + ROH$$

This represents the only example of the formation of an M–CS bond where CS_2 does not act as the CS donor.

Busetto et al. [44] have investigated the reactions of $[CpFe(CO)_2CS]^+$ with various nucleophilic agents. Three different types of reactions were observed depending upon the nature of the nucleophile.

In all the reactions described above, the nucleophilic attack occurs at the CS group.

Consequently, it was suggested that the electrophilic character of the thiocarbonyl carbon atom in $[CpFe(CO)_2CS]^+$ is significantly higher than that of the carbonyl carbon atoms.

The ⁵⁷Fe Mössbauer spectra of a variety of cationic complexes of the type $[CpFe(CO)_2L]^+$ (L = monodentate ligand including CO and CS) have been investigated [45]. On the basis of isomer shifts, it was concluded that CS is a better π -acceptor than is CO.

2. Ruthenium

176

As mentioned earlier (see p. 165), the reaction of $\text{RuCl}_2(\text{PPh}_3)_3$ or $\text{RuCl}_2(\text{PPh}_3)_4$ with CS₂ and excess PPh₃ leads exclusively to the formation of the π -CS₂ complex, [RuCl(PPh₃)₃(π -CS₂)]Cl. However, in the absence of PPh₃, the π -CS₂ complex precipitates out of solution and concentration of the filtrate affords the dimer [RuCl₂(CS)(PPh₃)₂]₂.

On the basis of IR evidence, structure XIV (or a similar one with *cis*-CS groups) was proposed for the complex; for steric reasons the PPh₃ groups were considered to be *trans* to each other. The bromo analogue is also known.

The reactions of the chloro complex with CO, Py, Bipy and o-Phen have been investigated [11]*. As expected, the complex undergoes cleavage reactions typical of a halogenbridged species, e.g.:

The anionic ruthenium thiocarbonyl, $[RuCl_3(CS)(PPh_3)_2]^-$, prepared from $[RuCl_2(CS)(PPh_3)_2]_2$ and Cl^- , has been reported recently [46]. This complex is as yet the only example of a thiocarbonylmetallate.

3. Cobalt

The evidence for a thiocarbonyl complex of cobalt is by no means conclusive. Among the numerous sulphur-containing products of the reaction of $\text{Co}_2(\text{CO})_8$ with CS_2 is a complex of stoichiometry, $\text{Co}_3(\text{CO})_6\text{CS}_2$ (yield 1.5%) [13]. Its infrared spectrum exhibits one band at 1011 cm⁻¹ and it was suggested that this could indicate a triply-bridged CS group. The proposed structure consists of a triangle of three $\text{Co}(\text{CO})_2$ units bonded to an apical trivalent sulphur atom with CS group bridging on the other side of the cluster.

4. Rhodium

It was mentioned earlier (p. 165) that RhCl(PPh₃)₃ reacts with CS₂ to form the rather unstable complex, RhCl(PPh₃)₂(CS₂)(π -CS₂). Dissolution of this complex in CHCl₃, followed by addition of MeOH and subsequent removal of the solvent yields the thiocarbonyl, *trans*-RhCl(CS)(PPh₃)₂, in 50% yield [9]. Among the side-products of the reaction are PPh₃S and PPh₃O. That PPh₃ is the sulphur-acceptor was demonstrated by repeating the reaction in the presence of excess PPh₃. Addition of a 1/1 mixture of MeOH and CS₂ to RhCl(PPh₃)₃ and PPh₃ leads to the formation of an emerald-green solution. The cationic species, [Rh(PPh₃)₃(π -CS₂)]⁺, can be precipitated from this solution as its tetraphenylborate salt. However, if CS₂ is removed from the solution before precipitation of the π -CS₂ complex, orange crystals of *trans*-RhCl(CS)(PPh₃)₂ are formed in almost quantitative yield. The residual solution contains all the abstracted sulphur in the form of PPh₃S.

The molecular structure of *trans*-RhCl(CS)(PPh₃)₂ has been determined by de Boer et al. [47]. Although there is a slight distortion, the structure contains the expected

* Py = pyridine, Bipy = bipyridine, o-Phen = o-phenanthroline.

square-planar coordination around the rhodium atom together with a nearly-linear thiocarbonyl ligand ($\angle Rh-C-S$, 177.2°). The Rh-C distance (1.787 Å) in the complex is appreciably shorter than that in the carbonyl analogue, *trans*-RhCl(CO)(PPh₃)₂ (1.86 Å), suggesting a greater Rh-C double bond character for the former. 「「「「「「「「」」」

The Rh^I thiocarbonyl undergoes oxidative addition with Cl₂ to give the Rh^{III} derivative, RhCl₃(CS)(PPh₃)₂ [2,9]. (The analogous bromo compounds have also been prepared.) In contrast to its carbonyl analogue, *trans*-RhCl(CS)(PPh₃)₂ does not add HCl. It was suggested that this could indicate a lowering of the non-bonding electron density on the metal resulting from the better π -acceptor character of CS. Moreover, it has proved experimentally impossible to replace the thiocarbonyl ligand in the complex by CO (1 atm, 25°) and the complex decomposes following attack by MeI and HgCl₂. These results were also explained in terms of the π -acidity of CS.

Treatment of *trans*-RhCl(CS)(PPh₃)₂ with LiSCN gives the S-bonded thiocyanato complex, *trans*-Rh(CS)(SCN)(PPh₃)₂ [9]. The thiocarbonyl complex also reacts easily with tetracyanoethylene (TCNE) to give RhCl(CS)(PPh₃)₂(TCNE) [48]. Infrared data seem to support a hexacoordinated structure with TCNE bonded to the rhodium atom via metal-carbon σ -bonds.

The reaction of *trans*-RhCl(CS)(PPh₃)₂ with CS₂ to give complexes containing CS and π -CS₂ ligands has been discussed already (see p. 166).

5. Iridium

The chemistry of the iridium thiocarbonyl, *trans*-IrCl(CS)(PPh₃)₂, has been studied somewhat more extensively than that of its rhodium analogue. The complex was first prepared in low yield by Yagupsky and Wilkinson [16] from IrCl(PPh₃)₃ or [IrCl- (C_8H_{12})]₂ and CS₂. In the case of IrCl(PPh₃)₃, an unidentified product exhibiting a strong infrared absorption at 1360 cm⁻¹, was also formed.

Kubota and Carey [49] have reported a high yield synthesis of trans-IrCl(CS)(PPh₃)₂ using trans-IrCl(PPh₃)₂(N₂) as the starting material. The reaction scheme (Fig. 2) clearly demonstrates that the nature of the products formed in the reactions of transition metal complexes with CS₂ is highly dependent on the experimental conditions employed. The presence of PPh₃ and MeOH is essential to the formation of trans-IrCl(CS)(PPh₃)₂.

The structures proposed for the intermediates, $IrCl(PPh_3)_2C_2S_5$ and $IrCl(CS)(PPh_3)_2CS_3$, were based on the similarity of their infrared absorption patterns in the 1050-800 cm⁻¹ region to that of Ni^{II} complexes containing the perthiocarbonato ligand, CS_4^- . The complex, $IrCl(CS)(PPh_3)_2CS_3$ ($\nu(CS)$ 1360 cm⁻¹) was thought to be the unidentified complex observed by Yagupsky and Wilkinson [16] in their synthesis of *trans*-IrCl(CS)(PPh_3)_2. Thermal decomposition of either IrCl(PPh_3)_2C_2S_5 or IrCl(CS)(PPh_3)_2CS_3 yields a complex which was formulated tentatively as $IrCl(CS)(PPh_2)_2CS_3$. The formation of PPh_3S as a byproduct of the reactions involving PPh_3 indicates that the latter acts as the sulphur acceptor in the synthesis of thiocarbonyls in Fig. 2.

The low yields and experimental difficulties in their synthetic methods prompted Yagupsky and Wilkinson [16] to restrict their investigation of the chemistry of *trans*-

Fig. 2.

IrCl(CS)(PPh₃)₂ mainly to a spectroscopic survey. In contrast to its carbonyl analogue, trans-IrCl(CS)(PPh₃)₂ does not oxidatively add molecular hydrogen. However, treatment of trans-IrCl(CS)(PPh₃)₂ with CO and SO₂ gives the adducts, IrCl(CO)(CS)(PPh₃)₂ and IrCl(CS)(SO₂)(PPh₃)₂, respectively. The structure of the latter is believed to be similar to that of its carbonyl analogue, IrCl(CO)(SO₂)(PPh₃)₂, viz., a tetragonal pyramid with the SO₂ group in the apical position bound to the metal through the sulphur atom.

The hydride, $IrH(CS)(PPh_3)_3$, formed from the reaction of *trans*-IrCl(CS)(PPh_3)_2 with NaBH₄ in the presence of excess PPh₃, was actually isolated. Its NMR spectrum indicated a trigonal-bipyramidal structure with equivalent equatorial PPh₃ groups.

Recently, Fitzgerald et al. [50] demonstrated the Lewis basicity of *trans*-IrCl(CS)-(PPh₃)₂ by successfully forming adducts with boron trichloride, boron tribromide, tetracyanoethylene and fumaronitrile. No reaction took place with boron trifluoride, ethylene or acrylonitrile. The boron trihalide adducts could not be assigned a definitive stoichiometry while the two other adducts were of 1/1 stoichiometry. The BCl₃ adduct readily undergoes hydrolysis to form the hydrogen chloride oxidative addition product, IrHCl₂-(CS)(PPh₃)₂. The thiocarbonyl stretching frequency, ν (CS), of the parent complex increases by about 25 cm⁻¹ upon adduct formation. These shifts were interpreted as indicating the diminished transition metal basicity of the thiocarbonyl complex compared to its carbonyl analogue.

The cationic thiocarbonyls of iridium, $[Ir(CO)_2(CS)L_2]^+$ (L = PPh₃, PCy₃) *, were

* Cy = cyclohexyl, C_6H_{11} .

prepared recently by Mays and Stefanini [51] by bubbling CO through a CHCl₃ solution of the appropriate tetracoordinated complex, *trans*-IrCl(CS)L₂; the tricyclohexylphosphine derivative, *trans*-IrCl(CS)(PCy₃)₂, was synthesized from *trans*-IrCl(CS)(PPh₃)₂ in a phosphine exchange reaction.

The crystal structure of $[Ir(CO)_2(CS)(PPh_3)_2]$ $[PF_6] \cdot Me_2CO$ shows that the cation has a trigonal bipyramidal geometry with the phosphines in mutually *trans* positions [72]. The Ir--C(S) group is linear (178.2°) and the Ir--C(S) distance (1.867Å) is significantly shorter than the Ir--C(O) distances (mean 1.938Å) providing further support for the better σ -donor and π -acceptor properties of CS compared to CO.

The chemistry of the thiocarbonyl cations was investigated and compared to that of the related tricarbonyls in order to determine the extent of reactivity change brought about by the replacement of a CO group by CS [51]. Whereas the the tricarbonyl cations undergo facile reversible addition of H₂ to give hexacoordinate dihydrides, the thiocarbonyl complex, $[Ir(CO)_2(CS)(PPh_3)_2]^+$, fails to add H₂ under the same conditions. This observation prompted the preparation of $[Ir(CO)_2(CS)(PCy_3)_2]^+$ in the first place, since a kinetic investigation of the complexes, $[IrH_2(CO)_2L_2]^+$, had shown that the more basic the phosphine the less readily was hydrogen displaced from the dihydride. The complex, $[IrH_2(CO)_2(PCy_3)_2]^+$, was the most stable (kinetically) with respect to hydrogen loss. The thiocarbonyl tricyclohexylphosphine derivative, $[Ir(CO)_2(CS)(PCy_3)_2]^+$, does in fact add H₂ to give the dihydride $[IrH_2(CO)(CS)(PCy_3)_2]^+$. Spectroscopic data for this complex and the dideuteride analogue indicate that hydride and carbonyl ligands are in mutually *trans* positions.

Carbon monoxide replaces hydrogen in $[IrH_2(CO)(CS)(PCy_3)_2]^+$ more readily than in any of the $[IrH_2(CO)_2L_2]^+$ cations and in particular, loss of H₂ from the CO analogue, $[IrH_2(CO)_2(PCy_3)_2]^+$, is very slow by comparison. It was suggested that this could be attributed to the better π -acceptor properties of CS compared to CO, thereby lowering the electron density at the metal and so destabilizing the Ir^{III} state compared with Ir^I. This stability of thiocarbonyls towards H₂ addition has been noted already for *trans*-IrCl(CS)(PPh₃)₂ (see p. 169).

Neither $[Ir(CO)_2(CS)(PPh_3)_2]^+$ nor $[Ir(CO)_2(CS)(PCy_3)_2]^+$ forms adducts with dimethylacetylene dicarboxylate, although the carbonyl cations $[Ir(CO)_3L_2]^+$ do so at room temperature. The complexes, *trans*-IrCl(CS)L₂, can be regenerated easily by Cl⁻ attack on the cations, $[Ir(CO)_2(CS)L_2]^+$. This reaction is similar to that of $[Ir(CO)_3L_2]^+$ to give *trans*-IrCl(CO)L₂.

Reaction of $[CpFe(CO)_2CS]^+$ with MeO⁻ in anhydrous MeOH leads to the formation of the thioester, CpFe(CO)_2C(S)OMe (see p. 175). However, in the case $[Ir(CO)_2(CS)-(PPh_3)_2]^+$, nucleophilic attack takes place at the carbon atom of a coordinated carbonyl rather than at that of the thiocarbonyl group. This results in the formation of the ester $Ir(CO)(CS)(PPh_3)_2C(O)OMe$. Protonation of this ester regenerates the complex, $[Ir(CO)_2(CS)(PPh_3)_2]^+$. The reaction of $[Ir(CO)_2(CS)(PPh_3)_2]^+$ with PMePh₂ affords the monocarbonyl cation, $[Ir(CO)(CS)(PMePh_2)_3]^+$.

Mays and Stefanini [51] also investigated the formation of other cationic species from

trans-IrCl(CS) L_2 . In these reactions, the square-planar thiocarbonyl complexes behave in an analogous way to trans-IrCl(CO) L_2 . For example, with NOBF₄, the pentacoordinated cations, [IrCl(CS)(NO) L_2]⁺, are produced. The structure of these cations is probably similar to that of [IrCl(CO)(NO)(PPh₃)₂]⁺ which has been shown by X-ray diffraction to be square-pyramidal with a bent Ir-N-O linkage. With Diphos, trans-IrCl(CS)(PPh₃)₂ gives [Ir(CS)(Diphos)₂]⁺ which is analogous to [Ir(CO)(Diphos)₂]⁺.

B. Manganese

The monothiocarbonyl complex, $CpMn(CO)_2CS$, was first prepared in low yield (< 10%) by reaction of $CpMn(CO)_2(C_8H_{14})$ with CS_2 at about 40° for approximately 1 week [52]. The reaction is complicated by the formation of minute quantities of $CpMn(CO)_3$ and various unidentified carbonyl and/or carbon disulphide-containing complexes. When the same reaction is repeated in the presence of excess PPh₃, the thiocarbonyl complex is produced in essentially quantitative yield after 24 h [53]. The only other products are PPh₃S and *cis*-cyclooctene (C_8H_{14}). Infrared evidence and kinetic data [54] for the reaction suggest that it proceeds by an S_N 1 dissociative mechanism involving the slow loss of C_8H_{14} in the rate-determining step to form the coordinatively unsaturated species $CpMn(CO)_2$ which then undergoes rapid reaction with CS_2 , followed by sulphur abstraction by PPh₃. The complete proposed mechanism is shown in Fig. 3.

The IR data leave little doubt as to the formation of the intermediate CpMn(CO)₂CS₂ as a π -CS₂ complex. Moreover, its formation is not unreasonable when one remembers that the syntheses of the Group VIII metal thiocarbonyls also appear to involve π -CS₂ intermediates. Structure XV is proposed [54] for CpMn(CO)₂(π -CS₂). Such a heptacoordinated π -cyclopentadienylmanganese(III) dicarbonyl species is not without precedent because the complexes, CpMn(CO)₂(SiPh₃)H [55], CpMn(CO)₂(SiCl₃)H [56] and CpMn(CO)₂-(SiCl₃)(SnCl₃) [57] have been synthesized recently. X-ray data for CpMn(CO)₂(SiPh₃)H suggest the presence of a hydrogen bridge between manganese and silicon, thus forming a three-membered ring similar to that proposed for CpMn(CO)₂(π -CS₂).

The mechanism of the reaction in the absence of PPh₃ is difficult to assess. However, there is some evidence [54] that suggests that $CpMn(CO)_2CS$, $CpMn(CO)_3$ and the other products may be formed via thermal decomposition of $CpMn(CO)_2(\pi-CS_2)$.

Infrared data have also been obtained [54] for the methyl- π -cyclopentadienyl derivative, (π -MeC₅H₄)Mn(CO)₂CS.

Both CO groups, but not the CS group, in CpMn(CO)₂CS undergo UV induced substitution with C¹⁸O [58], C₈H₁₄, Diphos [54], and various monodentate Group VA ligands such as PPh₃, SbPh₃, P(OMe)₃ and P(OPh)₃ [59] to form CpMn(CO)(CS)L and CpMn(CS)L₂. Some of the Group VA derivatives, CpMn(CO)(CS)L, exhibit "CO frequency doubling" presumably due to conformational isomerism similar to that observed for various other π -cyclopentadienylmetal carbonyl derivatives, e.g., CpFe(CO)₂SiMe₂Cl [60] and CpMn(CO)₂S-n-Bu₂ [61]. No splitting of the CS absorptions was detected for any of the thiocarbonyl derivatives.

The cis-cyclooctene derivative, $CpMn(CO)(CS)(C_8H_{14})$, has been used as a precursor to $CpMn(CO)(CS)_2$ and $CpMn(CS)_3$ [53].

$$CpMn(CO)_{2}CS + C_{8}H_{14} \xrightarrow{h\nu} CpMn(CO)(CS)(C_{8}H_{14}) + CO$$

$$CpMn(CO)(CS)(C_{8}H_{14}) + CS_{2} \xrightarrow{PPh_{3}} CpMn(CO)(CS)_{2} + C_{8}H_{14} + PPh_{3}S$$

$$CpMn(CO)(CS)_{2} + C_{8}H_{14} \xrightarrow{h\nu} CpMn(CS)_{2}(C_{8}H_{14}) + CO$$

$$CpMn(CS)_2(C_8H_{14}) + CS_2 \xrightarrow{h\nu} CpMn(CS)_3 + C_8H_{14} + PPh_3S_2$$

While the dithiocarbonyl derivative was characterized definitively, the trithiocarbonyl was only identified spectroscopically. These two species are the only known examples of multiple CS groups being attached to a metal atom.

The vibrational spectra of CpMn(CO)₂CS and CpMn(CO)(CS)₂ have been assigned [62]. In particular, the ν (CS), ν (Mn-CS) and δ (MnCS) modes have been located in the 1310– 1240, 645–473 and 625–448 cm⁻¹ regions, respectively. Surprisingly, no Raman lines attributable to the ν (CS) modes were detected in the 1350–1200 cm⁻¹ region. This is a particularly remarkable observation because the CS group would be expected to be highly polarizable and hence exhibit strong Raman lines. Whether the lack of CS lines is a general characteristic of thiocarbonyls or just peculiar to the π -cyclopentadienylmanganese thiocarbonyls remains to be established.

The low frequency IR spectra of CpMn(CS)(Diphos) and CpMn(CS)(Triphos) [Triphos = PPh(CH₂CH₂PPh₂)₂] have also been studied [63]. The assignments made for the ν (Mn-CS) and δ (MnCS) modes confirm those proposed for CpMn(CO)₂CS and CpMn(CO)-(CS)₂.

It is of interest that the $\nu(CS)$ frequencies for the CpMn(CS)L₂ derivatives are lower than those for the related CpMn(CO)(CS)L derivatives [59]. This may imply that the C-S bond in the former has become weaker with concomitant strengthening of the Mn-CS bond. A similar bond-weakening/bond-strengthening effect has been noted for the C-O/Mn-CO bonds in the analogous CpMn(CO)₂L complexes on replacement of CO by L [64].

The mass spectra of $CpMn(CO)_2CS$, $CpMn(CO)(CS)_2$ and several of the CpMn(CO)-(CS)L and $CpMn(CS)L_2$ derivatives have been recorded [54, 59]. The proposed fragmentation pathways for the degradation of $CpMn(CO)_2CS$ are shown in Fig. 4. All the spectra exhibit peaks corresponding to the parent molecular ions, as do the spectra of their car-

bonyl analogues [65]. Moreover, Mn-CS bond cleavage is favoured over C-S bond cleavage; as for CO, the fragmentation of CS from the manganese atom occurs in one step. In contrast to the CpMn(CO)₂L derivatives, for which both CO groups are lost simultaneously from the parent molecular ions, CpMn(CO)₂CS exhibits the stepwise loss of the CO groups followed by the loss of CS. There is a peak at m/e 99 in all of the spectra which under high resolution proves to be due to Mn(CS)⁺. The presence of this peak indicates that, in addition to the pathway leading to CpMn⁺ (m/e 120), the CpMn(CS)⁺ ion (m/e 164) may also lose the π -cyclopentadienyl ring before rupture of the Mn-CS bond. This contrasts to the fragmentation of π -cyclopentadienylmanganese carbonyl complexes where the CO groups and any other ligands present are always lost before the ring [66].

The kinetics and mechanism of the *cis*-cyclooctene substitution in CpMn(CO)(CS)-(C₈H₁₄) by PPh₃ in methylcyclohexane have been investigated [67]. Over the temperature range employed (50–70°), the rate is approximately four times faster than for the analogous reaction of CpMn(CO)₂(C₈H₁₄) with PPh₃. The kinetic data for the thiocarbonyl reaction are in accord with the following S_N l dissociative mechanism, i.e., a similar mechanism to that proposed by Angelici and Loewen for the reaction of CpMn(CO)₂-(C₈H₁₄) with PPh₃ [68].

$$CpMn(CO)(CS)(C_8H_{14}) \xrightarrow{slow} CpMn(CO)(CS) \xrightarrow{fast} CpMn(CO)(CS)PPh_3$$

That the thiocarbonyl reaction is significantly faster than that for the carbonyl complex can be explained in terms of the greater π -acceptor capacity of CS compared to CO.

Finally, the absolute integrated infrared intensity of the CS stretching mode in CpMn(CO)₂CS has been measured in CS₂ solution [69]. The value calculated for the associated dipole moment derivative μ' (CS) is supportive of the similar bonding characteristics of CS and CO.

IV. Conclusion

184

This review has shown that over the past seven years a great deal of research has been carried out on the activation of CS_2 by transition metal complexes. Nevertheless, this topic remains largely unexplored. In particular, little structural data on the five main types of complexes have been reported and the best synthetic procedures are only just becoming apparent.

In the case of the metal thiocarbonyls, it is obvious that the generation of the CS ligand from CS_2 necessitates the presence of an efficient sulphur acceptor such as PPh₃. The physical and chemical properties of the thiocarbonyl complexes seem to point to the greater stability of these complexes compared to the analogous carbonyl ones, in agreement with the theoretical predictions of Richards [42]. This means that the present scarcity of metal thiocarbonyls is probably due to experimental procedure rather than the inherent instability of the complexes.

In conclusion, it is clear that the use of CS_2 as a solvent for reactions involving transition metal complexes must be carefully considered in future. Carbon disulphide undergoes many more reactions than is often realized. Of the five main types of complexes examined in this review, it is anticipated that in the next few years the study of CS_2 insertion and thiocarbonyl complexes will prove to be two of the most fruitful areas of research in transition metal chemistry.

V. Infrared data for carbon disulphide and thiocarbonyl complexes

Infrared spectroscopy provided the chief physical tool used in the studies described in the preceding sections of this review. Consequently, we felt that an analysis of the infrared data collected for the known carbon disulphide and thiocarbonyl complexes would be of importance for future investigations in this field. The frequency ranges for the CS stretching absorptions for the different types of complexes are shown in Table 1; the complete data are listed in Tables 2-4 *.

Of particular interest is the range of the $\nu(CS)$ frequencies in metal thiocarbonyls, viz., 1381–1193 cm⁻¹. This is somewhat surprising in view of the similarity in bonding properties of CO and CS. Upon coordination, the CO stretching frequency of free CO decreases from 2143 cm⁻¹ to approximately 2000 cm⁻¹ (sometimes even as low as 1850 cm⁻¹ for terminal CO bonding). However, it appears that the CS stretching frequency can both increase and decrease with respect to the frequency of "free" CS (1274 cm⁻¹ when trapped in a CS₂ matrix [70]). Since π -backbonding is almost certainly present in metal– CS bonds, the most probable explanation for this effect lies in the extent of coupling of the CS stretching modes with the low frequency modes (below 700 cm⁻¹) of the molecules.

TABLE 1

 $\nu(\text{CS})$ FREQUENCY RANGES FOR THE KNOWN TYPES OF TRANSITION METAL CS_2 AND THIOCARBONYL COMPLEXES

Type of complex	$\nu(CS)(cm^{-1})$	
, S		
M	1235–955 ^a , 653–632 ^b	
M-S=C=S	1520-1503	
M-CS ₂ -M	980, 840 ^c	
M-S2CX d	1267-815 ^e ,780-612 ^f	
M-CS	1381-1193	

^{*a*} Out-of-ring ν (C=S) vibration. ^{*b*} In-ring ν (C-S) vibration. ^{*c*} Data only available for one CS₂ bridging complex viz., K₆[(CN)₅CoCS₂Co(CN)₅] [9, 19]. ^{*d*} X = H, alkyl, aryl, or amine. ^{*e*} ν (CS₂)_{asym}. f_{ν} (CS₂)_{sym}.

* Note that data are only presented for those complexes whose molecular stoichiometries and probable structures have been reasonably well established.

186											
							•				
					•						t el t
	ن م 2	VcI.	6	54 54	999	. .	Π	8 15 X	16 15 16	16 16	17
	ad ii ba		22	S 2	S2 H2 Cl2	2 6	ljol	loit loit	loiu loiu	lolu lolu	2
	د د	E	ଅ 	បថ	058	3 8	ž	ŹŹŹ	źźź	ŹŹ	S
MPLEXES	S-bonded CS ₂ mod	μ(C=S)						1510	1503		· · ·
ED CS ₂ CC		µ(C−S)		~ 640m		•	850m?			•	
AD S-BOND				•	•				•		1 000
k π-CS ₂ AN	nodes a		-4		1118s	1101	1055s	971m 955m	955m 980?	980? 999m	1024 b
m ^{- 1}) FOr	π-CS ₂ π	ν(C=S)	1141s	1235s 1229s	1151s 1148s(b) 1152(sh	1148	1105s	1028s 1102m 1101m	1101m 1104m	1104m 1109s	1042 b
JR ABSORPTIONS (c)2(π-CS ₂)	CS ₂) 4)3] 2(π-CS ₂)	H ₄) ₃] ₂ (π-CS ₂))]CI	r-CS2) CS2) BPh4	252)]BPh4 -CS2)]BPh4	BPh4 T-CS2)	S2)]2
TABLE 2 CAR BON-SULPHU		compres	Cp ₂ V (π-CS ₂)	CpMn(CO) ₂ (π-CS ₂) (π-MeC ₅ H ₄)Mn(CO)	Fe(CO)2(PPh ₃)2(#4 Fe(CO)2(P(p-FC ₆ H ₄	Fe(CO)2 [P(p-MeC ₆]	[RuCl(PPh ₃) ₃ (π-CS ₂	RhCl(PPh ₃) ₂ (CS ₂)(i (Rh(CO)(PPh ₃) ₃ (元イ (Rh(CS)(PPh ₂)) ₄ (CS	[Rh(CS)(PPh ₃) ₂ (π-C [Rh(PPh ₃) ₃ (CS ₂)(π-C	[Rh(PPh ₃) ₃ (π-CS ₂)] Rh(PPh ₃) ₂ (SnCl ₃)(τ	[RhCl(PPh ₂ Et) ₂ (n -C

lrCl(CO)(PPh ₃) ₂ (π-CS ₂)	1161	1154				Nujol	80	
It I (CO) (PPh ₃) ₂ (π -CS ₂) c	1188m	1165s	•			CS2	80	
$[Ir(CO)(PPh_3)_3(\pi-CS_2)]BPh_4$	1106m	1012m				Nujol	16	
$[Ir(CS)(PPh_3)_2(CS_2)(\pi-CS_2)]BPh_4$	1106m	1009m			1510	Nujol	16	
$[IrCl(C_8H_{12})(\pi-CS_2)]_2$	1170					q	6	
$[Ir(CS)(PPh_3)_2(\pi-CS_2)]BPh_4$	1106m	1009m				Nujol	16	
$[Ir(PPh_3)_3(CS_2)(\pi-CS_2)]BPh_4$	1005m	1000s	·-		1510	Nujol	16	
[Ir(PPh ₃) ₃ (π-CS ₂)[BPh ₄	1005m	1000s				Nujol	16	
$[Ni(\pi-CS_2)(PPh_3)]_2$	1122					Nujol	~	
	1196	1117				CS2	8	
$Pd(PPh_3)_2(\pi-CS_2)$	1193					CS ₂	œ	
	1176	1151				Nujol	×	
	1190	1177	1152	636		Nujol	9	
Pd (Diphos) (π -CS ₂)	1178	1167	1152	632		Nujol	9	
$Pt(PPh_3)_2(\pi-CS_2)$	1146s			651s		CH ₂ Cl ₂	8,40	
	1160s	1141s			•	Nujol	œ	
	1179	1163	1145	653		Nujol	6	
Pt(Me)I(PPh ₃) ₂ (CS ₂)					1520	ď	11	

in the parent compound RhCl₂H(PPh₂Et)₃. ^c The two ν (C=S) absorptions observed for this complex were attributed to the presence of two isomers where the n-CS₂ absorptions were not specifically assigned, the assignments given are those of the present authors. b Already present but less intense a v(C=S), out-of-ring vibration; v(C-S), in-ring vibration. The relative intensities given are those quoted in the various references. In those cases differing in the orientation of the π -CS₂ ligand. ^d Medium unspecified.

CARBON-SULPHUR ABSORPTIONS (cm ⁻	¹) FOR CS	2 INSERTIC	ON COMPLEX	KES	-
	ν(CS ₂) α			Madium	Dof
Complex	asym		sym		
From insertion into metal-hydrogen honds Mn(CO) ₃ (Ph ₂ PCH ₂ PPh ₂)(SSCH) Mn(CO) ₂ (Dishoc)(SSCH)	818 900	. <u>.</u>	652? 779	KBr KRr	25 25
Re(CO) ₃ (Ph ₂ PCH ₂ PPh ₂) (SSCH)	815	. ··	645	KBr	25
Re(CO) ₃ (Diphos)(SSCH) Re(CO) ₂ (PPh ₃) ₂ (SSCH)	1008 940		780	KBr Nujol	25
PtCl(PPh ₃) ₂ (SSCH) PtCl(PEt ₃) ₂ (SSCH)	1050	930 930		Nujol Thin film	22
From insertion into metal-carbon bonds Mn(CO) _A (SSCPh)	1267m		618m	KBr	30
Mn (CO)4 [SSC (p-MeC ₆ H ₄)]	1265m		613m	KBr	30
Re(CO)4(SSCMe)	1146m		616m	KBr	30
Re(CO)4(SSCPh) Re(CO)4(SSC(0-MeC,H4)]	1267 1264m		613m 612m	KBr KBr	9 8
Re(CO)4 [SSC(p-CIC ₆ H ₄)]	1258m		616m 623m	KBr VBr	30
Ke(CU)3(ITTII3)(DOLTII)	1110071		111070	IUN	2

TABLE 3

Rh12(PPh3)2(SSCMe) • C6H6 Rh(PPh3)3(<i>π</i> -CS2)(SSCPh) <i>b</i>	1110 1261m	000	່. ບັບ	12
From insertion into metal-nitrogen bonds				
Ti(SSCNMe ₂) ₄	1002		CH ₂ Cl ₂	34
TI(SSCNEt ₂) ₄	1004		CH ₂ Cl ₂	34
Ti(SSCN·n-Pr ₂)4	994		CH2Cl2	34
Zr(SSCNMe ₂) ₄	866		CH2CI2	34
Zr(SSCNEt ₂) ₄	666		CH ₂ Cl ₂	34
Zr(SSCN-n-Pr ₂) ₄	994		CH2Cl2	34
V(SSCNMe ₂) ₄	1006		CH ₂ Cl ₂	34
V(SSCNEt ₂) ₄	1000		CH2Cl2	34
Nb (SSCNMe ₂) _a	966		CH ₂ Cl ₂	34
Nb(SSCNEt ₂)4	1003		CH2Cl2	34
Ta(SSCNMe2)5	1000		CH2Cl2	34
Ni(SSCN ≤),	1045		Nujol	36
Ni (SSCN4 Me)2	1045		Nujol	36

rptions were not specifically assigned, the assignments given are those of the present authors. $b \nu(\pi - CS_2)$ 1003s cm⁻¹. ^c Medium unspecified.

Complex	$\nu(CS)^{a}$	Medium	Ref.
CpMn (CO)2CS	1266s	CS ₂	52.54
	1271s	Nujol	52.54
π-MeC₅H4) Mn(CO) ₂ CS	1262s	CS ₂	54
⁷ [pMn(CO)(CS)(C ₈ H ₁₄)	1242s	CS ₂	54
pMn(CO)(CS)PPh ₃	1231s	CS ₂	54
	1236s	n-hexane	54
	1217s	Nujol	54
(pMn (CO) (CS) AsPh ₃	1231s	CS ₂	59
pMn (CO) (CS) SbPh ₃	1230s	CS ₂	59
	1237s	n-hexane	59
pMn(CO)(CS)PMe ₂ Ph	1228s	CS ₂	59
	1234s	n-hexane	59
pMn(CO)(CS)(PCy ₃)	1222s	CS,	59
	1230s	n-hexane	59
pMn(CO)(CS)[P(OMe) ₃]	1239s	CS ₂	59
	1245s	n-hexane	59
pMn(CO)(CS)[P(OEt) ₃]	1236s	CS ₂	59
	1243s	n-hexane	59
pMn(CO)(CS)[P(OCH ₂ CH ₂ Cl) ₃]	1240s	CS_2	59
	1247s	n-hexane	59
pMn(CO)(CS)[P(OPh) ₃]	1254s	CS2	59
pMn(CS)(PPh ₃) ₂	1193s	CS_2	59
pMn(CS)(PMe2Ph)2	1195s	CS ₂	59
pMn(CS)[P(OMe) ₃] ₂	1218s	CS ₂	59
pMn(CS)[P(OEt) ₃] ₂	1214s	CS,	59
pMn(CS)[P(OCH ₂ CH ₂ Cl) ₃] ₂	1223s	CS ₂	59
pMn(CS)[P(OPh) ₃] ₂	1219s	CS ₂	59
pMn (CS) (Diphos)	1207s	CS ₂	54,63
	1211s	Nujol	54
pMn(CS) (Triphos)	1203s ^b	CS ₂	63
	1206s ^c	Ś	63

TARIFA

63 53,54	54	54 52 54	54.01	54	63	63	63	63	ro- 43		44	11	11	1.1	11	11	46	6	6	6	6	6	45	16	16	16	51	16	91.	(pounition)
ຮູ້ຮູ	Nujol	S. S	50.5	Nujol	CS2	CS ₂	CS2	cs,	hexachlo	butadiene	CS2	• مـ	امم	· • •	نعسم ا	i n a	Nujol	C6H6	C ₆ H ₆	CH ₂ Cl ₂	Nujol	Nujol	Nujol	Nujol	Nujal	Nujol				
1235vs	1240s	1217vs	SAU42 I		þ	ə										-														
1203s 1305s	1308s	1289s	1226m	1230s	1204m	1208m	1205m	1209m	1348s	•••	1316	1290s	1290s	1280s	1280s	1280s	1272	1299	1298	1362	1355	1304	1355	1289vs	1289vs	13285	1315s	13050	1305v	
CpMn(CS)(Triphos=0)		CpMn(CS) ₂ (C ₈ H ₁₄)	CpMn(CS) ₃	(comm(co)(co))2(mbinos)	CoMn(CS)(Triphos)Mn(CO) ₂ Cp		CoMn(CS)(Triphos)Cr(CO)		[CpFe(CO), CS PF,		CpFe (CO) (CS) (COOMe)	[RuCla(CS)(PPha),12	RuCl ₂ (CO) (CS) (PPli ₂) ₂	RuCl ₂ (CS)(Py)(PPl ₁₃) ₂	RuCl ₂ (CS) (Bipy) (PPh ₃) • 0.5CH ₂ Cl ₂	RuCl ₂ (CS) (Phen) (PPh ₃) • 0.5CH ₂ Cl ₂	Ph4 As[RuCl3 (CS) (PPh3)2]	trans-RhCl(CS)(PPha),	trans-RhBr (CS) (PPha)	RhCla(CS) (PPha)	RhBra(CS) (PPha),	trans-Rh(SCN)(CS)(PPh ₃) ₂	RhCl(CS)(PPha), (TCNE) &	[Rh(CS)(PPh ₃) ₂ (CS ₂)(π-CS ₂)]BPh ₄	[Rh (CS) (PPh ₃) ₂ (π-CS ₂)] BPh ₄	traits-IrCl(CS)(PPh-),	trains-IrCl(CS)(PCva)	11r(CS)(PPh_),(CS,)(f-CS,)]BPh_	[Ir(CS) (PPh ₃) ₂ (π-CS ₂)]BPh ₄	

TABLE 4 (continued)	•		
Complex	ν(CS) a	Medium	Ref.
Ircl(CS)(PPh ₃) ₂ (CS ₃)	1360	KBr	46
Ircl(CO)(CS)(PPh ₃) ₂	1289	tolucne	16
IrCl(CS)(SO ₂)(PPh ₃) ₂	1345	CH ₂ Cl ₂	16
IrH(CS)(PPh ₃) ₃	1252	Nujol	16
[Ir (CO) ₂ (CS) (PPh ₃) ₂] BPh ₄	1321s	CHCl ₃	51
[Ir (CO) ₂ (CS) (PCy ₃) ₂] BPh ₄	1303s	CHCl3	51
[IrH ₂ (CO) (CS) (PCy ₃) ₂]ClO ₄	1332s	CHCla	51
[lrD ₂ (CO) (CS) (PCy ₃) ₂]ClO ₄	1322s	CHCl ₃	51
Ir(CO)(CS)(PPh ₃) ₂ (COOMe)	1287s	Nujol	51
[Ircl(NO)(CS)(PPh ₃) ₂]BF ₄	1381s	Nujol	51
[Ircl(NO)(CS)(PCy ₃) ₂]BF ₄	1340s	Nujol	51
[Ir (CS) (Diphos)2 BPh4	1263s	Nujol	51
[lr (CO)(CS) (PMcPh ₂) ₃]BPh ₄	1297	Nujol	51
IrCl(CS)(PPh ₃) ₂ • (BCl ₃) _n	1361	5	50
$IrCl(CS)(PPh_3)_2 \cdot (BBr_3)_n$	1377	م و	50
IrCl(CS)(PPh ₃) ₂ • (TCNE) &	1370	ð	50
IrCI(CS)(PPh ₃) ₂ • (FUM) h	1350	Śwa	50
	ومرديها ورريتها يدود يسب جوريسه بالحاملان والرابع والمستعملة وسابته الروو		

a Absorptions associated with π -CS₂ or S-bonded CS₂ groups are listed in Table 3. The relative intensities given are those quoted in the various references. ^h γ -isomer. ^c ϕ isomer. ^d γ -isomer. ^e ϕ isomer. ^f ϕ isomer. fumaronitrile, C₄N₂H₂.

- 1 W.E. Duncan, E. Ott and E.E. Reid, Ind. Eng. Chem., 23 (1931) 381.
- 2 M.C. Baird and G. Wilkinson, Chem. Commun. (1966) 267.
- 3 M.C. Baird and G. Wilkinson, Chem. Commun. (1966) 514.
- 4 J.O. Glanville, J.M. Stewart and S.O. Grim, J. Organometal. Chem., 7 (1967) P9.
- 5 M.C. Baird, G. Hartwell, R. Mason, A.I.M. Rae and G. Wilkinson, Chem. Commun. (1967) 92.
- 6 T. Kashiwagi, N. Yasuoka, T. Ueki, N. Kasai, M. Kakudo, S. Takahashi and N. Hagihara, Bull. Chem. Soc. Jap., 41 (1968) 296.
- 7 R. Mason and A.I.M. Rae, J. Chem. Soc. A, (1970) 1767.
- 8 M.C. Baird and G. Wilkinson, J. Chem. Soc. A, (1967) 865.
- 9 M.C. Baird, G. Hartwell and G. Wilkinson, J. Chem. Soc. A, (1967) 2037.
- 10 L. Busetto, U. Belluco and R.J. Angelici, J. Organometal. Chem., 18 (1969) 213.
- 11 J.D. Gilbert, M.C. Baird and G. Wilkinson, J. Chem. Soc. A, (1968) 2198.
- 12 L. Marko, G. Bor and E. Klumpp, Angew. Chem., 75 (1963) 248.
- 13 E. Klumpp, G. Bor and L. Marko, J. Organometal. Chem., 11 (1968) 207.
- 14 J.F. Blount, L. Marko, G. Bor and L.F. Dahl, personal communcation.
- 15 C.H. Wei, personal communication.
- 16 M. Yagupsky and G. Wilkinson, J. Chem. Soc. A. (1968) 2813.
- 17 D. Commereuc, I. Douek and G. Wilkinson, J. Chem. Soc. A, (1970) 1771.
- 18 A.J. Deeming and B.L. Shaw, J. Chem. Soc. A, (1969) 1128.
- 19 T. Mizuta, T. Suzuki and T. Kwan, Nippon Kagaku Zasshi, 88 (1967) 573.
- 20 J.N. Francis and M.F. Hawthorne, Inorg. Chem., 10 (1971) 594.
- 21 M.F. Lappert, in F.G.A. Stone and R. West (Eds.), Advances in Organometallic Chemistry, Vol. 5, Academic Press Inc., New York, 1967, p. 291–292.
- 22 A. Palazzi, L. Busetto and M. Graziani, J. Organometal. Chem., 30 (1971) 273.
- 23 V.G. Albano, P.L. Bellon and G. Ciani, J. Organometal. Chem., 31 (1971) 75.
- 24 M. Freni, D. Giusto and P. Romiti, J. Inorg. Nucl. Chem., 33 (1971) 4093.
- 25 F.W. Einstein, E. Enwall, N. Flitcroft and J.M. Leach, J. Inorg. Nucl. Chem., 34 (1972) 885.
- 26 W. Hieber and W. Rohm, Chem. Ber., 102 (1969) 2787.
- 27 E. Lindner and D. Langner, Z. Naturforsch. B, 24 (1969) 1402.
- 28 E. Lindner, R. Grimmer and H. Weber, J. Organometal. Chem., 23 (1970) 209.
- 29 E. Lindner, R. Grimmer and H. Weber, Angew. Chem., Int. Ed. Engl., 9 (1970) 639.
- 30 E. Lindner and R. Grimmer, J. Organometal. Chem., 25 (1970) 493.
- 31 G. Thiele and G. Liehr, Chem. Ber., 104 (1971) 1877.
- 32 H.J. Vetter and H. Nöth, Chem. Ber., 96 (1963) 1308.
- 33 H.J. Vetter, H. Strametz and H. Nöth, Angew. Chem., 75 (1963) 417.
- 34 D.C. Bradley and M.H. Gitlitz, J. Chem. Soc. A, (1969) 1152.
- 35 B.J. McCormick and R.I. Kaplan, Can. J. Chem., 48 (1970) 1876.
- 36 B.J. McCormick and R.I. Kaplan, Can. J. Chem., 49 (1971) 699.
- 37 N. Nehmé and S.J. Teichner, Bull. Soc. Chim. Fr., (1960) 659.
- 38 R. Havlin and G.R. Knox, Z. Naturforsch. B, 21 (1966) 1108.
- 39 P. Bladon, R. Bruce and G.R. Knox, Chem. Commun., (1965) 557.
- 40 P.J. Hayward, D.M. Blake, G. Wilkinson and C.J. Nyman, J. Amer. Chem. Soc., 92 (1970) 5873.
- 41 J.A. Evans, M.J. Hacker, R.D.W. Kemmit, D.R. Russell and J. Stocks, Chem. Commun., (1972) 72.
- 42 W.G. Richards, Trans. Faraday Soc., 63 (1967) 257.
- 43 L. Busetto and R.J. Angelici, J. Amer. Chem. Soc., 90 (1968) 3283.
- 44 L. Busetto, M. Graziani and U. Belluco, Inorg. Chem., 10 (1971) 78.
- 45 K. Burger, L. Lorecz, P. Mag, U. Belluco and L. Busetto, Inorg. Chim. Acta, 5 (1971) 362.
- 46 T.A. Stephenson and E. Switkes, Inorg. Nucl. Chem. Lett., 7 (1971) 805.
- 47 J.L. de Boer, D. Rogers, A.C. Skapski and R.G.H. Troughton, Chem. Commun., (1966) 756.
- 48 W.H. Baddley, J. Amer. Chem. Soc., 88 (1966) 4545.
- 49 M. Kubota and C.R. Carey, J. Organometal. Chem., 24 (1970) 491.

50 R.J. Fitzgerald, N.Y. Sakkab, R.S. Strange and V.P. Narutis, Inorg. Chem., 12 (1973) 1081.

51 M.J. Mays and F.P. Stefanini, J. Chem. Soc. A, (1971) 2747.

52 I.S. Butler and A.E. Fenster, Chem. Commun., (1970) 933.

53 A.E. Fenster and I.S. Butler, Can. J. Chem., 50 (1972) 598.

54 A.E. Fenster, Ph.D. Thesis, McGill University, Montreal, Quebec, Canada, 1972.

55 M.J. Bennett and W. Brooks, Chem. Eng. News, 48 (1970) 75.

56 W. Jetz and W.A.G. Graham, Inorg. Chem., 10 (1971) 4.

57 W. Jetz and W.A.G. Graham, Inorg. Chem., 10 (1971) 1647.

58 I.S. Butler and A.E. Fenster, J. Organometal. Chem., 51 (1973) 307.

59 N.J. Coville and I.S. Butler, J. Organometal. Chem., 64 (1974) 101.

60 W. Jetz and W.A.G. Graham, J. Amer. Chem. Soc., 89 (1967) 2773.

61 I.S. Butler and T. Sawai, Inorg. Chem., 12 (1973) 1994.

62 G.G. Barna, Ph.D. Thesis, McGill University, Montreal, Quebec, Canada, 1973.

63 N.J. Coville, Ph.D. Thesis, McGill University, Montreal, Quebec, Canada, 1973.

64 C. Barbeau, Can. J. Chem., 45 (1967) 161.

65 J. Müller and K. Fenderl, J. Organometal. Chem., 19 (1969) 123.

66 R.B. King, Fortschr. Chem. Forsch., 14 (1970) 92.

67 I.S. Butler and A.E. Fenster, Inorg. Chim. Acta, 7 (1973) 79.

68 R.J. Angelici and W. Loewen, Inorg. Chem., 6 (1967) 682.

69 I.S. Butler and D. Johansson, unpublished results.

70 R. Steudel, Z. Naturforsch. B, 21 (1966) 1106.

71 M. Colapietro, A. Vaciago, D.C. Bradley, M.B. Hursthouse and I.F. Rendall, *Chem. Commun.*, (1970) 743 and references therein.

72 J.S. Field and P.J. Wheatley, J. Chem. Soc., Dalton Trans., (1972) 2269.

Note added in proof

Angelici and co-workers have succeeded in isolating four new metal thiocarbonyls, viz., $M(CO)_5 CS (M = Cr, Mo, W)$ and $[PtCl(PPh_3)_2 (CS)]^+$ by the following synthetic routes:

 $[M(CO)_{5}]^{2-} + Cl_{2}C=S \rightarrow M(CO)_{5}CS + 2Cl^{-}$ Pt(PPh_3)₄ + Cl(OMe)C=S \rightarrow PtCl(PPh_3)₂(CSOMe) $\xrightarrow{}_{BF_{3}}$ [PtCl(PPh_3)₂(CS)]⁺

For details see R.J. Angelici, B.D. Dombrek and E. Dobrzynski, 6th International Conference on Organometallic Chemistry, Amherst, Mass., U.S.A., August 1973, abstract no. 134.